
Token化一切,甚至网络!北大&谷歌&马普所提出TokenFormer,Transformer从来没有这么灵活过!
Token化一切,甚至网络!北大&谷歌&马普所提出TokenFormer,Transformer从来没有这么灵活过!新一代通用灵活的网络结构 TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters 来啦!
新一代通用灵活的网络结构 TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters 来啦!
Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。
牛顿没解决的问题,AI给你解决了? AI的推理能力一直是研究的焦点。作为最纯粹、要求最高的推理形式之一,能否解决高级的数学问题,无疑是衡量语言模型推理水平的一把尺。
7 年前,谷歌在论文《Attention is All You Need》中提出了 Transformer。就在 Transformer 提出的第二年,谷歌又发布了 Universal Transformer(UT)。它的核心特征是通过跨层共享参数来实现深度循环,从而重新引入了 RNN 具有的循环表达能力。
OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。
自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。
是什么让纽约大学著名研究者谢赛宁三连呼喊「Representation matters」?他表示:「我们可能一直都在用错误的方法训练扩散模型。」即使对生成模型而言,表征也依然有用。基于此,他们提出了 REPA,即表征对齐技术,其能让「训练扩散 Transformer 变得比你想象的更简单。」
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。
随着诺贝尔物理学奖颁给了「机器学习之父」Geoffrey Hinton,另一个借鉴物理学概念的模型架构也横空出世——微软清华团队的最新架构Differential Transformer,从注意力模块入手,实现了Transformer的核心能力提升。
注意力是 Transformer 架构的关键部分,负责将每个序列元素转换为值的加权和。将查询与所有键进行点积,然后通过 softmax 函数归一化,会得到每个键对应的注意力权重。